|
作者:handsomeli,腾讯IEG后台开发工程师1.Nginx基础架构nginx启动后以daemon形式在后台运行,后台进程包含一个master进程和多个worker进程。如下图所示:master与workernginx是由一个master管理进程,多个worker进程处理工作的多进程模型。基础架构设计,如下图所示:基础架构设计master负责管理worker进程,worker进程负责处理网络事件。整个框架被设计为一种依赖事件驱动、异步、非阻塞的模式。如此设计的优点:1.可以充分利用多核机器,增强并发处理能力。2.多worker间可以实现负载均衡。3.Master监控并统一管理worker行为。在worker异常后,可以主动拉起worker进程,从而提升了系统的可靠性。并且由Master进程控制服务运行中的程序升级、配置项修改等操作,从而增强了整体的动态可扩展与热更的能力。2.Master进程2.1核心逻辑master进程的主逻辑在ngx_master_process_cycle,核心关注源码:ngx_master_process_cycle(ngx_cycle_t *cycle){ ... ngx_start_worker_processes(cycle, ccf->worker_processes, NGX_PROCESS_RESPAWN); ... for ( ;; ) { if (delay) {...} ngx_log_debug0(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "sigsuspend"); sigsuspend(&set); ngx_time_update(); ngx_log_debug1(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "wake up, sigio %i", sigio); if (ngx_reap) { ngx_reap = 0; ngx_log_debug0(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "reap children"); live = ngx_reap_children(cycle); } if (!live & (ngx_terminate || ngx_quit)) {...} if (ngx_terminate) {...} if (ngx_quit) {...} if (ngx_reconfigure) {...} if (ngx_restart) {...} if (ngx_reopen) {...} if (ngx_change_binary) {...} if (ngx_noaccept) { ngx_noaccept = 0; ngx_noaccepting = 1; ngx_signal_worker_processes(cycle, ngx_signal_value(NGX_SHUTDOWN_SIGNAL)); } } }由上述代码,可以理解,master进程主要用来管理worker进程,具体包括如下4个主要功能:1.接受来自外界的信号。其中master循环中的各项标志位就对应着各种信号,如:ngx_quit代表QUIT信号,表示优雅的关闭整个服务。2.向各个worker进程发送信。比如ngx_noaccept代表WINCH信号,表示所有子进程不再接受处理新的连接,由master向所有的子进程发送QUIT信号量。3.监控worker进程的运行状态。比如ngx_reap代表CHILD信号,表示有子进程意外结束,这时需要监控所有子进程的运行状态,主要由ngx_reap_children完成。4.当woker进程退出后(异常情况下),会自动重新启动新的woker进程。主要也是在ngx_reap_children2.2热更2.2.1热重载-配置热更热重载nginx热更配置时,可以保持运行中平滑更新配置,具体流程如下:1.更新nginx.conf配置文件,向master发送SIGHUP信号或执行nginx-sreload2.master进程使用新配置,启动新的worker进程3.使用旧配置的worker进程,不再接受新的连接请求,并在完成已存在的连接后退出2.2.2热升级-程序热更热升级nginx热升级过程如下:1.将旧Nginx文件换成新Nginx文件(注意备份)2.向master进程发送USR2信号(平滑升级到新版本的Nginx程序)3.master进程修改pid文件号,加后缀.oldbin4.master进程用新Nginx文件启动新master进程,此时新老master/worker同时存在。5.向老master发送WINCH信号,关闭旧worker进程,观察新worker进程工作情况。若升级成功,则向老master进程发送QUIT信号,关闭老master进程;若升级失败,则需要回滚,向老master发送HUP信号(重读配置文件),向新master发送QUIT信号,关闭新master及worker。3.Worker进程3.1核心逻辑worker进程的主逻辑在ngx_worker_process_cycle,核心关注源码:ngx_worker_process_cycle(ngx_cycle_t *cycle, void *data){ ngx_int_t worker = (intptr_t) data; ngx_process = NGX_PROCESS_WORKER; ngx_worker = worker; ngx_worker_process_init(cycle, worker); ngx_setproctitle("worker process"); for ( ;; ) { if (ngx_exiting) {...} ngx_log_debug0(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "worker cycle"); ngx_process_events_and_timers(cycle); if (ngx_terminate) {...} if (ngx_quit) {...} if (ngx_reopen) {...} }}由上述代码,可以理解,worker进程主要在处理网络事件,通过ngx_process_events_and_timers方法实现,其中事件主要包括:网络事件、定时器事件。3.2事件驱动-epollworker进程在处理网络事件时,依靠epoll模型,来管理并发连接,实现了事件驱动、异步、非阻塞等特性。如下图所示:infographic-Inside-NGINX_nonblocking通常海量并发连接过程中,每一时刻(相对较短的一段时间),往往只需要处理一小部分有事件的连接即活跃连接。基于以上现象,epoll通过将连接管理与活跃连接管理进行分离,实现了高效、稳定的网络IO处理能力。网络模型对比其中,epoll利用红黑树高效的增删查效率来管理连接,利用一个双向链表来维护活跃连接。epoll数据结构3.3惊群由于worker都是由master进程fork产生,所以worker都会监听相同端口。这样多个子进程在accept建立连接时会发生争抢,带来著名的“惊群”问题。worker核心处理逻辑ngx_process_events_and_timers核心代码如下:void ngx_process_events_and_timers(ngx_cycle_t *cycle){ //这里面会对监听socket处理 ... if (ngx_accept_disabled > 0) { ngx_accept_disabled--; } else { //获得锁则加入wait集合, if (ngx_trylock_accept_mutex(cycle) == NGX_ERROR) { return; } ... //设置网络读写事件延迟处理标志,即在释放锁后处理 if (ngx_accept_mutex_held) { flags |= NGX_POST_EVENTS; } } ... //这里面epollwait等待网络事件 //网络连接事件,放入ngx_posted_accept_events队列 //网络读写事件,放入ngx_posted_events队列 (void) ngx_process_events(cycle, timer, flags); ... //先处理网络连接事件,只有获取到锁,这里才会有连接事件 ngx_event_process_posted(cycle, &ngx_posted_accept_events); //释放锁,让其他进程也能够拿到 if (ngx_accept_mutex_held) { ngx_shmtx_unlock(&ngx_accept_mutex); } //处理网络读写事件 ngx_event_process_posted(cycle, &ngx_posted_events);}由上述代码可知,Nginx解决惊群的方法:1.将连接事件与读写事件进行分离。连接事件存放为ngx_posted_accept_events,读写事件存放为ngx_posted_events。2.设置ngx_accept_mutex锁,只有获得锁的进程,才可以处理连接事件。3.4负载均衡worker间的负载关键在于各自接入了多少连接,其中接入连接抢锁的前置条件是ngx_accept_disabled>0,所以ngx_accept_disabled就是负载均衡机制实现的关键阈值。ngx_int_t ngx_accept_disabled;ngx_accept_disabled = ngx_cycle->connection_n / 8 - ngx_cycle->free_connection_n;因此,在nginx启动时,ngx_accept_disabled的值就是一个负数,其值为连接总数的7/8。当该进程的连接数达到总连接数的7/8时,该进程就不会再处理新的连接了,同时每次调用'ngx_process_events_and_timers'时,将ngx_accept_disabled减1,直到其值低于阈值时,才试图重新处理新的连接。因此,nginx各worker子进程间的负载均衡仅在某个worker进程处理的连接数达到它最大处理总数的7/8时才会触发,其负载均衡并不是在任意条件都满足。如下图所示:实际工作情况其中'pid'为1211的进程为master进程,其余为worker进程4.思考4.1为什么不采用多线程模型管理连接?1.无状态服务,无需共享进程内存2.采用独立的进程,可以让互相之间不会影响。一个进程异常崩溃,其他进程的服务不会中断,提升了架构的可靠性。3.进程之间不共享资源,不需要加锁,所以省掉了锁带来的开销。4.2为什么不采用多线程处理逻辑业务?1.进程数已经等于核心数,再新建线程处理任务,只会抢占现有进程,增加切换代价。2.作为接入层,基本上都是数据转发业务,网络IO任务的等待耗时部分,已经被处理为非阻塞/全异步/事件驱动模式,在没有更多CPU的情况下,再利用多线程处理,意义不大。并且如果进程中有阻塞的处理逻辑,应该由各个业务进行解决,比如openResty中利用了Lua协程,对阻塞业务进行了优化。视频号最新视频
|
|