找回密码
 会员注册
查看: 42|回复: 0

python爬取杭州市二手房销售数据做数据分析附源码

[复制链接]

2

主题

0

回帖

7

积分

新手上路

积分
7
发表于 2024-9-8 17:27:17 | 显示全部楼层 |阅读模式
欢迎来到英杰社区https://bbs.csdn.net/topics/617804998 一、背景        在数据分析和市场调研中,获取房地产数据是至关重要的一环。本文介绍了如何利用Python中的requests、lxml库以及pandas库,结合XPath解析网页信息,实现对链家网二手房销售数据的爬取,并将数据导出为Excel文件的过程。         二、效果图     函数功能getAreasInfo(city):该函数用于获取指定城市的各区域名称和链接信息,返回一个列表,包含区域名和链接。getSinglePageInfo(city,areaname,pathname):该函数用于获取单页的二手房销售数据,包括房屋名称、小区名、房屋信息等,返回一个DataFrame对象。getSalesData(city):该函数整合了前两个函数,遍历所有区域获取多页数据,并将结果保存为Excel文件。       数据保存        爬取的数据经过整理后,以DataFrame的形式存储,并最终通过to_excel()方法保存为Excel文件,便于后续分析和可视化展示。三、代码讲解importrequestsfrombs4importBeautifulSoupimportpandasaspd    如果出现模块报错       进入控制台输入:建议使用国内镜像源pipinstall模块名称-ihttps://mirrors.aliyun.com/pypi/simple        我大致罗列了以下几种国内镜像源:清华大学https://pypi.tuna.tsinghua.edu.cn/simple阿里云https://mirrors.aliyun.com/pypi/simple/豆瓣https://pypi.douban.com/simple/百度云https://mirror.baidu.com/pypi/simple/中科大https://pypi.mirrors.ustc.edu.cn/simple/华为云https://mirrors.huaweicloud.com/repository/pypi/simple/腾讯云https://mirrors.cloud.tencent.com/pypi/simple/首先,我们导入了必要的库:importrequestsfromlxmlimportetreeimportjsonimportpandasaspd接下来是一些请求所需的头信息和cookies:cookies={#这里是一些cookie信息}​headers={#这里是一些请求头信息}现在,我们定义了一个函数getAreasInfo(city),用于获取各个区域的名称和链接:defgetAreasInfo(city):#发送请求,获取页面内容#从页面内容中提取区域名称和链接returndistricts然后是另一个函数getSinglePageInfo(city,areaname,pathname),用于获取单页的二手房信息:defgetSinglePageInfo(city,areaname,pathname):#发送请求,获取页面内容#解析页面内容,提取所需的房屋信息#将提取的信息保存到DataFrame中returndf接下来是主函数getSalesData(city),用于获取整个城市的二手房销售数据并保存到Excel文件:defgetSalesData(city):#获取各区域信息#遍历各区域,调用getSinglePageInfo()函数获取数据#整合数据到DataFrame中#将DataFrame数据保存为Excel文件最后,在if__name__=='__main__':中,我们调用了getSalesData('hz')函数以执行爬取数据的操作。四、完整代码:importrequestsfromlxmlimportetreeimportreimportjsonimportpandasaspdcookies={'lianjia_uuid':'d63243c2-9abd-4016-a428-7272d9bd4265','crosSdkDT2019DeviceId':'-5xmwrm-pv43pu-kiaob2z7e31vj11-vs7ndc7b3','select_city':'330100','digv_extends':'%7B%22utmTrackId%22%3A%22%22%7D','ke_uuid':'bac7de379105ba27d257312d20f54a59','sensorsdata2015jssdkcross':'%7B%22distinct_id%22%3A%2218a8d4f86e46b6-0a2c26d29b1766-4f641677-2073600-18a8d4f86e5f7e%22%2C%22%24device_id%22%3A%2218a8d4f86e46b6-0a2c26d29b1766-4f641677-2073600-18a8d4f86e5f7e%22%2C%22props%22%3A%7B%22%24latest_traffic_source_type%22%3A%22%E7%9B%B4%E6%8E%A5%E6%B5%81%E9%87%8F%22%2C%22%24latest_referrer%22%3A%22%22%2C%22%24latest_referrer_host%22%3A%22%22%2C%22%24latest_search_keyword%22%3A%22%E6%9C%AA%E5%8F%96%E5%88%B0%E5%80%BC_%E7%9B%B4%E6%8E%A5%E6%89%93%E5%BC%80%22%7D%7D','lianjia_ssid':'6734443f-a11a-49c9-989e-8c5d2dc51185',}headers={'Accept':'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7','Accept-Language':'zh-CN,zh;q=0.9,en;q=0.8,en-GB;q=0.7,en-US;q=0.6','Connection':'keep-alive',#'Cookie':'lianjia_uuid=d63243c2-9abd-4016-a428-7272d9bd4265;crosSdkDT2019DeviceId=-5xmwrm-pv43pu-kiaob2z7e31vj11-vs7ndc7b3;select_city=330100;digv_extends=%7B%22utmTrackId%22%3A%22%22%7D;ke_uuid=bac7de379105ba27d257312d20f54a59;sensorsdata2015jssdkcross=%7B%22distinct_id%22%3A%2218a8d4f86e46b6-0a2c26d29b1766-4f641677-2073600-18a8d4f86e5f7e%22%2C%22%24device_id%22%3A%2218a8d4f86e46b6-0a2c26d29b1766-4f641677-2073600-18a8d4f86e5f7e%22%2C%22props%22%3A%7B%22%24latest_traffic_source_type%22%3A%22%E7%9B%B4%E6%8E%A5%E6%B5%81%E9%87%8F%22%2C%22%24latest_referrer%22%3A%22%22%2C%22%24latest_referrer_host%22%3A%22%22%2C%22%24latest_search_keyword%22%3A%22%E6%9C%AA%E5%8F%96%E5%88%B0%E5%80%BC_%E7%9B%B4%E6%8E%A5%E6%89%93%E5%BC%80%22%7D%7D;lianjia_ssid=6734443f-a11a-49c9-989e-8c5d2dc51185','Referer':'https://hz.ke.com/ershoufang/pg2/','Sec-Fetch-Dest':'document','Sec-Fetch-Mode':'navigate','Sec-Fetch-Site':'same-origin','Sec-Fetch-User':'?1','Upgrade-Insecure-Requests':'1','User-Agent':'Mozilla/5.0(Macintosh;IntelMacOSX10_15_7)AppleWebKit/537.36(KHTML,likeGecko)Chrome/122.0.0.0Safari/537.36Edg/122.0.0.0','sec-ch-ua':'"Chromium";v="122","Not(A:Brand";v="24","MicrosoftEdge";v="122"','sec-ch-ua-mobile':'?0','sec-ch-ua-platform':'"macOS"',}#获取区的名称和路由defgetAreasInfo(city):responseinit=requests.get(f'https://{city}.ke.com/ershoufang',cookies=cookies,headers=headers)html_text_init=etree.HTML(responseinit.text)districts=[zforzinzip(html_text_init.xpath('//a[@class="CLICKDATA"]/text()'),html_text_init.xpath('//a[@class="CLICKDATA"]/@href'))]returndistricts#获取页面数据defgetSinglePageInfo(city,areaname,pathname):response1=requests.get(f'https://{city}.ke.com{pathname}pg1/',cookies=cookies,headers=headers)html_text1=etree.HTML(response1.text)#获取页面总数pageInfo=html_text1.xpath('//div[@class="page-boxhouse-lst-page-box"]/@page-data')#数据较多,可以先设置2页,看看是否可以导出#pageTotal=json.loads(pageInfo[0])['totalPage']pageTotal=2title=[]position=[]house=[]follow=[]totalPrice=[]unitPrice=[]url=[]foriinrange(1,pageTotal+1):response=requests.get(f'https://{city}.ke.com{pathname}pg{i}/',cookies=cookies,headers=headers)html_text=etree.HTML(response.text)ullist=html_text.xpath('//ul[@class="sellListContent"]//li[@class="clear"]')forliinullist:liChildren=li.getchildren()[1]#名称title.append(liChildren.xpath('./div[@class="title"]/a/text()')[0])#url地址url.append(liChildren.xpath('./div[@class="title"]/a/@href')[0])#小区名称position.append(liChildren.xpath('./div/div/div[@class="positionInfo"]/a/text()')[0])#房屋信息houselis=liChildren.xpath('./div/div[@class="houseInfo"]/text()')house.append([x.replace('\n','').replace('','')forxinhouselis][1])#上传时间followlis=liChildren.xpath('./div/div[@class="followInfo"]/text()')follow.append([x.replace('\n','').replace('','')forxinfollowlis][1])#总价totalPrice.append(liChildren.xpath('./div/div[@class="priceInfo"]/div[@class="totalPricetotalPrice2"]/span/text()')[0].strip())#单价unitPrice.append(liChildren.xpath('./div/div[@class="priceInfo"]/div[@class="unitPrice"]/span/text()')[0].replace('元/平',""))returnpd.DataFrame(dict(zip(['行政区域','名称','小区名','房屋信息','发布时间','总价(万)','单价(元/平)','地址'],[areaname,title,position,house,follow,totalPrice,unitPrice,url])))defgetSalesData(city):districts=getAreasInfo(city)dfInfos=pd.DataFrame()fordistrictindistricts:dfInfo=getSinglePageInfo(city,district[0],district[1])dfInfos=pd.concat([dfInfos,dfInfo],axis=0)dfInfos.to_excel(f'{city}二手房销售数据.xlsx',index=False)if__name__=='__main__':getSalesData('hz')pass
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 会员注册

本版积分规则

QQ|手机版|心飞设计-版权所有:微度网络信息技术服务中心 ( 鲁ICP备17032091号-12 )|网站地图

GMT+8, 2025-1-11 01:52 , Processed in 0.680486 second(s), 26 queries .

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表