|
最近在网上看到别人做的爬取微信聊天记录并分析聊天内容,GitHub上试着运行了一下,这好东西肯定要分享出来给各位,总结一下几年的微信聊天内容😁,废话不多说,下面一步步来。先展示一下,我和我对象的聊天内容分析:源代码和出处:GitHub-LC044/WeChatMsg:提取微信聊天记录,将其导出成HTML、Word、CSV文档永久保存,对聊天记录进行分析生成年度聊天报告大家记得给作者点点star,督促作者开发更优的信息抓取功能。一、微信聊天记录爬取下载微信聊天记录爬取程序:(软件安全正常,直接无视安全问题😎)https://github.com/LC044/WeChatMsg/releases/download/v1.0.6/MemoTrace-1.0.6.exe电脑需要登录微信,如果电脑微信聊天记录不齐全,可以通过手机进行微信聊天记录迁移。安卓:手机微信->我->设置->聊天->聊天记录迁移与备份->迁移-> 迁移到电脑微信(迁移完成后重启微信)iOS:手机微信->我->设置->通用->聊天记录迁移与备份->迁移-> 迁移到电脑微信(迁移完成后重启微信)打开软件,随后点击获取信息,获取手机号、微信昵称、wxid等内容,之后点击开始启动就行。若出现wxid或微信路径无法获取问题,查看解决办法("留痕"使用教程(lc044.love)),一般都是没问题的。选择“数据 --> 批量导出”,选择你想要导出的联系人信息。导出格式选择csv格式,方便我们后续利用python进行数据分析:导出后的结果在程序同目录下的“data--> 聊天记录“文件中,我们需要csv文件,记住csv文件的地址,自此微信聊天记录爬取结束👌。PS:上述软件也可以进行数据分析,作者也贴出年度报告,各位可以尝试一下,不过内容较少且存在乱码。二、内容分析可视化展示:环境配置:python3.8(3.10matplotlib不兼容问题)numpypandasseabornjiebajulywordcloud接下来直接内容分析代码,代码中需要根据你的CSV文件地址修改以及聊天双方名字修改:importmatplotlib.pyplotaspltimportpandasaspdimportreimportjulyimportjiebafromjuly.utilsimportdate_rangeimportseabornassnsfromscipy.statsimportnormimportnumpyasnpfromwordcloudimportWordCloudfromcollectionsimportCounterdefset_chinese_font():#设置中文字体plt.rcParams['font.sans-serif']=['SimHei']#设置中文字体为黑体plt.rcParams['axes.unicode_minus']=False#用来正常显示负号defread_chat_data(file_path):#读取CSV文件df=pd.read_csv(file_path)returndfdefpreprocess_data(df):#数据预处理df=df[df['Type']==1]#只保留文本聊天selected_columns=['IsSender','StrContent','StrTime']df=df[selected_columns]#只取'IsSender','StrContent','StrTime'列df['StrTime']=pd.to_datetime(df['StrTime'])df['Date']=df['StrTime'].dt.datereturndfdefplot_chat_frequency_by_day(df):#每天聊天频率柱状图chat_frequency=df['Date'].value_counts().sort_index()chat_frequency.plot(kind='bar',color='#DF9F9B')total_messages=len(df)date_labels=[date.strftime('%m-%d')fordateinchat_frequency.index]plt.text(30,1300,'消息总数:{0}条'.format(total_messages),ha='left',va='top',fontsize=10,color='black')plt.text(30,1250,'起止时间:{0}---{1}'.format(date_labels[0],date_labels[-1]),ha='left',va='top',fontsize=10,color='black')plt.xlabel('Date')plt.ylabel('Frequency')plt.title('ChatFrequencybyDay')plt.xticks(range(1,len(date_labels),7),date_labels[::7])plt.xticks(fontsize=5)plt.show()defplot_calendar_heatmap(df):#制作日历热力图df['Date']=pd.to_datetime(df['Date'])start_date=df['Date'].min()end_date=df['Date'].max()dates=date_range(start_date,end_date)july.heatmap(dates=dates,data=df['Date'].value_counts().sort_index(),cmap='Pastel1',month_grid=True,horizontal=True,value_label=False,date_label=False,weekday_label=True,month_label=True,year_label=True,colorbar=False,fontfamily="monospace",fontsize=12,title=None,titlesize='large',dpi=100)plt.tight_layout()plt.show()defanalyze_message_comparison(df):#双方信息数量对比sent_by_me=df[df['IsSender']==1]['StrContent']sent_by_others=df[df['IsSender']==0]['StrContent']count_sent_by_me=len(sent_by_me)count_sent_by_others=len(sent_by_others)labels=['你的名字','聊天对象的名字']sizes=[count_sent_by_me,count_sent_by_others]colors=['#FF6347','#9ACD32']explode=(0,0.05)plt.rc('font',family='YouYuan')plt.pie(sizes,explode=explode,labels=labels,colors=colors,autopct='%1.1f%%',shadow=True,startangle=90)plt.axis('equal')plt.title('Comparisonofthenumberofchats')plt.legend()plt.show()defanalyze_hourly_chat_frequency(df):#根据一天中的每一个小时进行统计聊天频率,并生成柱状图df['DateTime']=pd.to_datetime(df['StrTime'])df['Hour']=df['DateTime'].dt.hourhourly_counts=df['Hour'].value_counts().sort_index().reset_index()hourly_counts.columns=['Hour','Frequency']plt.figure(figsize=(10,8))plt.rc('font',family='YouYuan')ax=sns.barplot(x='Hour',y='Frequency',data=hourly_counts,color="#E6AAAA")sns.kdeplot(df['Hour'],color='#C64F4F',linewidth=1,ax=ax.twinx())plt.title('ChatFrequencybyHour')plt.xlabel('HouroftheDay')plt.ylabel('Frequency')plt.show()defis_chinese_word(word):forcharinword:ifnotre.match(r'[\u4e00-\u9fff]',char):returnFalsereturnTruedefcorrect(a,stop_words):b=[]forwordina:iflen(word)>1andis_chinese_word(word)andwordnotinstop_words:b.append(word)returnbdefword_fre_draw(a,str):a_counts=Counter(a)top_30_a=a_counts.most_common(30)words,frequencies=zip(*top_30_a)#绘制水平柱状图plt.figure(figsize=(10,15))plt.barh(words,frequencies,color='skyblue')plt.xlabel('Frequency')plt.ylabel('Words')plt.title('Top30WordsinChatMessagesfor{0}'.format(str))plt.show()defword_frequency_analysis(df):sent_by_me_text=''.join(df[df['IsSender']==1]['StrContent'].astype(str))sent_by_others_text=''.join(df[df['IsSender']==0]['StrContent'].astype(str))all_text=''.join(df['StrContent'].astype(str))words=list(jieba.cut(all_text,cut_all=False))my_words=list(jieba.cut(sent_by_me_text,cut_all=False))others_words=list(jieba.cut(sent_by_others_text,cut_all=False))withopen('stopwords_hit.txt',encoding='utf-8')asf:#添加屏蔽词汇con=f.readlines()stop_words=set()#集合可以去重foriincon:i=i.replace("\n","")#去掉读取每一行数据的\nstop_words.add(i)Words=correct(words,stop_words)My_words=correct(my_words,stop_words)others_words=correct(others_words,stop_words)words_space_split=''.join(Words)word_fre_draw(Words,'All')word_fre_draw(My_words,'你的名字')word_fre_draw(others_words,'他/她的名字')returnwords_space_splitdefword_cloud(words_space_split):wordcloud=WordCloud(font_path='C:\Windows\Fonts\STCAIYUN.TTF',width=800,height=600,background_color='white',max_words=200,max_font_size=100,).generate(words_space_split)plt.figure(figsize=(10,8))plt.imshow(wordcloud,interpolation='bilinear')plt.axis('off')plt.show()defanalyze_weekly_contribution(df):df['Weekday']=df['StrTime'].dt.day_name()#计算每天的消息数量weekday_counts=df['Weekday'].value_counts().reindex(["Monday","Tuesday","Wednesday","Thursday","Friday","Saturday","Sunday"])#找出频率最高的那天max_day=weekday_counts.idxmax()#制作饼状图plt.figure(figsize=(8,8))explode=[0.1ifday==max_dayelse0fordayinweekday_counts.index]#突出显示频率最高的那天plt.pie(weekday_counts,labels=weekday_counts.index,explode=explode,autopct='%1.1f%%',startangle=140,colors=plt.cm.Paired.colors)plt.title('DistributionofMessagesDuringtheWeek')plt.show()defanalyze_most_active_day_and_month(df):df['Date']=pd.to_datetime(df['Date'])df['YearMonth']=df['Date'].dt.to_period('M')df['Day']=df['Date'].dt.datedaily_counts=df['Day'].value_counts()max_day=daily_counts.idxmax()max_day_count=daily_counts.max()monthly_counts=df['YearMonth'].value_counts()max_month=monthly_counts.idxmax()max_month_count=monthly_counts.max()print(f"Mostactiveday:{max_day},with{max_day_count}messages.")print(f"Mostactivemonth:{max_month},with{max_month_count}messages.")if__name__=="__main__":set_chinese_font()df=read_chat_data('CSV文件')#加载数据集df=preprocess_data(df)#数据预处理plot_chat_frequency_by_day(df)#绘制每日聊天频率柱状图plot_calendar_heatmap(df)#绘制日历热力图analyze_message_comparison(df)#消息占比对比analyze_hourly_chat_frequency(df)#每小时聊天频率柱状图words=word_frequency_analysis(df)#词汇频率分析word_cloud(words)#词云制作analyze_weekly_contribution(df)#每周聊天频率analyze_most_active_day_and_month(df)#聊天最多的月和天文件中引用有停词文件,可以从GitHub上下载你想使用的(差不多都一样,可以在文件中添加新的屏蔽词语)。停词文件和代码文件放在同一目录下:GitHub-goto456/stopwords:中文常用停用词表(哈工大停用词表、百度停用词表等)然后直接运行代码就可以等着一张一张的图片展示啦😀😀各位有任何问题评论区欢迎提问😊
|
|